Effect of membrane fluidity on photoinhibition of isolated thylakoids membranes at room and low temperature.

نویسندگان

  • M Velitchkova
  • A Popova
  • T Markova
چکیده

The relationship between thylakoid membrane fluidity and the process of photoinhibition at room and low (4 degrees C) temperature was investigated. Two different membrane perturbing agents--cholesterol and benzylalcohol were applied to manipulate the fluidity of isolated pea thylakoids. The photochemical activity of photosystem I (PSI) and photosystem II (PSII), polarographically determined, were measured at high light intensity for different time of illumination at both temperatures. The exposure of cholesterol- and benzylalcohol-treated thylakoid membranes to high light intensities resulted in inhibition of both studied photochemical activities, being more pronounced for PSII compared to PSI. Time dependencies of inhibition of PSI and PSII electron transport rates for untreated and membranes with altered fluidity were determined at 20 degrees C and 4 degrees C. The effect is more pronounced for PSII activity during low-temperature photoinhibition. The data are discussed in terms of the determining role of physico-chemical properties of thylakoid membranes for the response of photosynthetic apparatus to light stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance to low temperature photoinhibition is not associated with isolated thylakoid membranes of winter rye.

In vivo measurements of chlorophyll a fluorescence indicate that cold-hardened winter rye (Secale cereale L. cv Musketeer) develops a resistance to low temperature-induced photoinhibition compared with nonhardened rye. After 7.2 hours at 5 degrees C and 1550 micromoles per square meter per second, the ratio of variable fluorescence/maximum fluorescence was depressed by only 23% in cold-hardened...

متن کامل

Quality Control of Photosystem II: The Mechanisms for Avoidance and Tolerance of Light and Heat Stresses are Closely Linked to Membrane Fluidity of the Thylakoids

When oxygenic photosynthetic organisms are exposed to excessive light and/or heat, Photosystem II is damaged and electron transport is blocked. In these events, reactive oxygen species, endogenous radicals and lipid peroxidation products generated by photochemical reaction and/or heat cause the damage. Regarding light stress, plants first dissipate excessive light energy captured by light-harve...

متن کامل

Effect of Dehydration Temperature on the H2 Separation Potential of Hydroxy Sodalite Zeolite Membranes

The main goal of this work was to synthesize and evaluate the effect of dehydration temperature on the potential application of hydroxy sodalite zeolite membrane. Hydroxy sodalite zeolite membranes were synthesized via direct hydrothermal method onto a tubular alumina support without seeding in a hot air oven. The synthesized membranes were characterized by X-ray diffraction (XRD) and scanning ...

متن کامل

Effects of drought on primary photosynthetic processes of cotton leaves.

The effects of drought on Photosystem II (PSII) fluorescence and photosynthetic electron transport activities were analyzed in cotton. Water stress did not modify the amplitude of leaf variable fluorescence at room temperature in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) nor at 77 K. It is therefore concluded that photon collection, their distribution between the two photos...

متن کامل

Effect of membrane fluidity on photosynthetic oxygen production reactions.

The effect of changes of membrane fluidity on the oxygen evolving capability of isolated thylakoids was investigated. Alteration of the lipid phase fluidity was achieved by incorporation of the plant sterol stigmasterol. Incorporation of stigmasterol in the lipid bilayer of thylakoid membranes results in rigidization of the hydrophobic phase of thylakoid membranes and decreases the degree of pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Zeitschrift fur Naturforschung. C, Journal of biosciences

دوره 56 5-6  شماره 

صفحات  -

تاریخ انتشار 2001